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FITTING A SERIES OF IMPULSE RESPONSES

BRY CONSTRAINED ARMA MODELS




ABSTRACT

A constrained autoregressive moving average (ARMA) model
is used to fit a train of impulses response resulting from
the displacement signal of firing the M-139 machine gun. The
fitted constrained ARMA(2,1) model has only .38% residuals
sum of squares as compared with 20.34% by the least square
fitting assuming a deterministic model for a ten impulses
experiment. The natural frequency of the system can also
be estimated directly from the fitted model. In a particular
experiment where the gun was jainmed the titted model yielded
a natural frequency at 12.6 Hz while the actual firing fre-
quency was 12.58. Hence the fitting technique can be

employed to facilitate the design of mounting system.

Key Words
Constrained ARMA
Train of impulses response
Stochastic differential equation
Natural frequency

Curve fitting
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1. INTRODUCTION

To model responses of a second order system excited
by a series of impulses, such as the displacement of a
mounting system for firing a machine gun, one can super-
impose a series of impulse responses to fit a deterministic
curve. Assuming the errors being independent normal
random variables, the method of least squares can be
used to estimate the parameters. However, in practice,
the errors are generally not independent; consequently
the estimated parameters will be inefficient leading
to erroneous estimation of the parameters.

The objective of this paper is to introduce a time
series technique which will facilitate the fitting of the
response of a train of impulses data. The constrained autore-
gressive moving average (ARMA) model will be used to fit
a series of impulse responses, and the mathematical
justification will be derived. Since the model contains
only the system parameters, the constrained ARMA fitting
is easier to implement than the familiar deterministic curve
fittinc method. Furthermore, the constrained ARMA model can
be physically interpreted. Real data of the M-139 machine
gun firing will be used to demonstrate the constrained ARMA
model fittinc and its application to solve a mounting system

failure problem.

P




2. MODELING TECHNIQUES

The deterministic model is applicable when the curve
to be fitted is a known time function containing a set of
unknown time-invariant parameters. The sampled values of
this function at uniform time intervals, say A seconds, are
assumed to be the sums of the "true" values and stationary
white noise.

Let Y, denotes the N observations at discrete time index
t, and € denotes a sequence of independent normal random vari-
ables with mean zero and variance caz(athID(O,caz), then
the deterministic model is represented by:

¥

= f(g,t) + € (1)

t t

f(B,t) = the value of the curve at time tc = A
tc = continuous time; tc > 0
B = p-vector of time-invariant parameters,

p 30
Note that if f(g,tc) denotes the continuous time function,

then f(8,t) = £(8,ta).

2.1 Response of a Second Order System Due to a Train

of Impulses

One frequently finds in practice that the curve to be
modeled is a response of a second order system excited by

an imbulse or series of impulses. Let
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¢ and Wy be the damping ratio and natural frequency of a

second order system whose inp:t is a train of impulses

M
) c 8 (t -t ), where M denotes the total number of impulses

k=1

and Cx and tk denote the strength and time of occurrence of
the kD impulse, then the response ?(B,tc) satisfies the

differential equation

g - d 2 -
sz(g.tc) + 2zw) I £(g,t) + o ?T(B,t ) =
C
M
): ckG(tc-tk):
k=1
M
and f(g,tc) = } ¢, Gt -t ) (2)
k=1

where G(tc—tk) is the Green's function given by

-zw_(t _-t,) sin w_v1-z? (t -t )u(t -t,)
Gt ~-t,) mg N © K o E_X . 19
c 'k
wn/l-cz

Here u(tc-tk) denotes the unit step function whose value is
unity for tc 2 tk and zero otherwise. An illustration of a
train of impulsesresponse is shown in Fig. 1 for 3 impulses.
Figure la shows the impulses of strengths Cyr Gy and C3

disturbing the system at times te ty and ts respectively.
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Computed by Eq. 9, Figs. 1lb, lc and 1d show the respon. 2s of
the system due to the impulses clé(tc—tl), czé(tc-tz) and
c36(tc-t3) in the same order. Assuming the system is linear,
then the output f(g,t) is simply the sum of the individual
responses, as shown in Fig. le. Note that neither the im-
pulses' strengths nor the time periods between the impulses

are assumed to be uniform.

2.2 Deterministic Curve Fitting of Discrete Data

Modeling of the continuous response E(Q,tc) given by
Eq. (2) can be conveniently implemented if it is observed
at a uniform time interval, If f(Q.t)

denotes the observed values at discrete time t=1,2,...,N,

then
M
= 3 - 4
@ st) = £(8 £ /8) = I qGltaty) (4)

and the model of Eq. (1) can be written as

<
|
e

ckG(tA-tk) + ey (5)

k=1

Assuming that €_'s are NID(O,Ccz), one can use the

t
nonlinear least squares method to estimate the parameters

C’ wnl ck and tk for k=l’2'---’ Mo

As illustrative examples, three sets of response data
were fitted. It will be discussed in Sec. 3 that the
digiiized experimental data from firing the M-139 machine
aun displayed in Figs. 2a, 3a and 4a are the responses of

second-order systems due to 1, 3 and 10 impulses respectively.

T o T -
& A f ik » 5 N R
R R O TN SR U SPRIIER AL oo LB TR .

‘.» 3




(a)

‘3r OBSERVATIONS, $5Q = 10000 %
o / \ /\ \” ’/,..\
\/ \.-/ 8 o t
-'3 L.
(b)
3T DETERMIN(STIC FITTING, SSQ = 97:56 %
—\ s o
(o} —
L.
-.3 N
(c)
‘30 RESIDUALS, $SSQ = 2:94 %
0 POt S T S ez e e ad e are T i
t
..3 L
(d)
37 CONSTRAINED ARMA FITTING, SSQ = 9996 %
\/ Nl '
r
..,3 L
(e)
3r g, 8, SSQ = ‘04 %
0 "'
i F16. 2

soibtivdatbuniiodon 8 gl o

S




-.4

(0) 7

OBSERVATIONS, SSQ = 100:00%

/.][\/\I\/\A/\/\/\l

m B R — G - L > e~ s - o
VY .

(b)
DETERMINISTIC FITTING, SSQ = 89-07%

[\[\ [\[_\VAV,
RURTAY i s '

(c)

-

RESIDUALS, SSQ = 10-93 %

mv-wvv’-lw\ R ey e
~ S ————
po

t
(d)
( CONSTRAINED ARMA FITTING, SSQ = 99-95 %
..é_/) NG i ON S

<
<]
(

q

(e)

i 9,'s, SSQ= ‘05 %

FIG. 3




(a) .
OBSERVATlONS. S3Q = 100:00%

O[QA{/&M\/I\/\A =N TAWITA fl/\ [l[\LJ\/\ all .

f Vu Uv sk I

- o

o o Al 0 n g
L VTTTTTTTY

(c)

RESIDUALS, s3qQ = 20-3¢ o

| : A & TR LAY f\ is \ e
°HﬂM%mwwwhﬁﬁ

-32l

(d)

CONSTRAINED ARMA FITTING, ssq = 99-62 %

ST

(e)

o's, $3Q = -3¢ g

A —’ <~ - =, - .~
‘
=16

FIG. 4




J_“_“_Ul ; j“ Feiieu

&~

(c)

““llln

LT e

(d)
T
o Il]_Ll‘ e B s
L
i (e)
l](
O by blostpdqus iy
L
| T (f)
0 = A LTLLT‘L’—LL1"J‘F‘_TJ“
L

FIG. 5 ESTIMATED AUTOCORRELATIONS
OF RESIDUALS




10

Using a nonlinear least squares minimization computer pro-
gram to estimate the parameters, the best fit curves are
plotted in Figs. 2b, 3b, 4b, and three respective residuals
in Figs. 2c, 3c, and 4c. Figures 5a, 5b and 5c show the
plots of estimated autocorrelation functions of the residuals

displayed in Figs. 2c, 3¢, and 4c.

2.3 Constrained ARMA Fitting Technique

It is seen from Figs. 2a, 2b and 2c that the deterministic
model fits the single impulse response data fairly well with
the relative sum of squares of residuals (sum of squares of
residuals @ sum of squares of the data x 100) of approximately
2%. However, the deterministic model does not satisfactorily
fit the train of impulses response data shown in Figs. 3a and
4a since their respective residuals plotted in Figs. 3c and

4c have large relative sums of squares (11% and 20% respect-
ively). Furthermore, Figs. 5a, S5b and 5c shows that each
series of residuals are highly correlated, and it appears

that the deterministic model is not adequate.

The dependence among et's can be adequately described

by an ARMA(n,m) model, where n and m are, respectively, the

autoregressive and moving average orders [3]. Hence, let

n m
S = 2 .t . + a, - F A (6)
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where

©
w
L}

i autoregressive parameters
j‘s = moving average parameters

at's = orthogonal decompositions of ¢ _'s,

t

' 2
a,'s are NID(O,oa )

Combining Egs. (5) and (6), it follows that

| M

n M m
Y -] cG(ta-t,) = ¢.[Y _.- ] c, G(E-1a -t,)]+a - } 6.a, .
t k=1 k k j=1 1 t-i kel k k t j=1 j t-j

(7)

Since at's are NID(O,oa’), the model given by Eg. (7) can

be fitted using the non linear lesast square estimators in

the same manner as the deterministic model given by Eq. (1).
It is frequently found in practice that the order of the

residuals et‘s can be assumed to be two or less. In fact,

the estimated autocorrelation functions plotted in Figures

5a, 5b and 5c suggest that et's are of second-order. There-
fore, model (7) may be simplified by assuming that n=2, m=1

and Eq. (7) becomes:

M M
Y -] cG(ta-t, ) = ¢,[Y, ;- ) c G(t-1A-t )] -
t 2k k 1 17 50K k ~
M
+ ¢2[Yt_2—k£1ckc(t-za—tk)] +a.-6,a,_, ,
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or
Tem 0Tt Bt g T A AL
M Jopates Py,
+ 3 C [G (A=t ) -0,G(t-14-t, ) -¢,G(E-28-¢t, )] (8)

k=1

Note that fitting model (8) to the response data is

rather inconvenient, as there are 2M+3 parameters to be
estimated. In order to simplify this problem it is assumed
that € and G(tA—tk) are from the same system, and model (8)
is simplified to (see appendix for proof)

o miteg b Pa¥e s ta 00 4 (9)

where ¢1,¢2 and 61 are functionally related to ¢ and wy -

Let a = Zw_, and b = mn/l—cz, then

n'

-al
¢1 = 2e cos bA (10)
¢2 . _e-2aA (11)
8, = -P+/P?-1,]8,]| <1,

P = b sinh 2aA -a sin 2bA (12) f
a sin bA cosh aA-b sinh aA cos bA

Although model (9) has an appearance of the ARMA model,

it differs from the latter in many respects. The most pro- |

nounced one is that the parameters ¢l' ¢2 and el are func-
tionally related, as clearly shown by Egs. (10), (11) and

(12), while those of the ARMA model are not. Furthermore, !
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Eq. (11) shows that @2 in model (9) is always negative, and
the value of ¢2 in the ARMA model does not have this restric-
tion. To distinguish model (9) from the general ARMA(2,1) model,
it is called the constrained ARMA(2,1) model [4] or uniformly
sampled autoregressive process of order 2 (USA(2)) ([3].

Note that Egs. (10,11, and 12) show that ¢1, @2 and 01
can be uniquely determined from ¢, wn and A. Hence the para-
meter 7 and w, can be estimated directly from digitized data
using model (9).

2.4 Examples of Constrained ARMA Modeling

The data plotted in Figs. 2a, 3a and 4a was modeled
using Eq. (9). The least souares estimators of r and w,  are
obtained by Eas. (9-12), and the continuous
and discrete parameters are tabulated in Table 1. The fitted
curves are plotted in Figs. 24, 3d and 4d; the respective

a,'s are plotted in Figs. 2e, 3e and 4e. Finally, the esti-

t

mated autocorrelations of the a_'s are shown in Figs. 5d,

t
S5e and 5f. Since the constrained ARMA model contains only
two parameters, ¢ and W the estimation procedure is simple
and the computer time required is greatly reduced. For ex-
ample, the approximated computer time required to fit the
data shown in Fig. 4a was reduced by a factor of 10. It is
also apparent from Figs. 2e, 3e, 4e, 5d, 5e and 5f that the
constrained ARMA fitting technique yields the curves that
fit the data remarkably well.

The constrained ARMA(2,1) model is used because its

parameters are directly related

B O
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Table 1
Results of ARMA Modeling
e | r o
jData in N | Pelative
) 5 % % e i £ = !
Figures 1 2 1 T n | _BEQ%*
i i |
. . 4
Za 1.961 -.974 -,268 .116 12.0 | 0.04%
!
3a 1.958 _o.wqw -.269 m.www 12,6 1 4.05%
42 1.862 (-.918 ({-.269 {.176 [25.7 | 0.38%
| . |
*f_ denotes natural freguency in Hertz, £ = u_/27.

**Relative sum of 357

uares of wﬂ.m.
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le

to the system under studies, and these parameters can be
physically interpretted. But if the system parameters are
of secondary importance, the (unconstrained) ARMA(2,1)

model can also be used.

3. APPLICATION

The three sets of data used as examples previously are
from experiments of firing the M-139 machine gun mounted on
a table composed of a table top and two cantilever beams
sketched in Fig. 6. The mounting shown is adjus-
table so that the effective lengths of the beams can be
varied. The M-139 machine gun was set to fire one, five and
;en rounds, and the table displacements were recorded during
these firing experiments. The data shown in Figs. 2a and 4a
are the displacement of the table during the experiments of
firing the M-139 machine gun one and ten rounds respectively.
There are occasions when the M-139 machine gun was set to
fire 5 or 10 rounds, but it failed consistently after 3 suc-
cessive fires; and the data displayed in Fig. 3a is an example
of the table displacements obtained from such experiments.

The displacements of the table sketched in Fig. 6 are
characterized by the second order differential equation:

a’ 4

—_— T(g,tc)+2cwn I

2 3 -
dtc? A f(g,tc)+wn f‘t'tc) I(tc)

where'I(tc) is the input force, and i, w  and f(B.tc) are
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as described in Section 2. During the experiments of firing
the M-139 machine gun, the input force can be closely ap-
proximated by a series of impulses, each with occurring

time tk and strength c k=1,2,...,M. It is assumed that

kl
during the course of experiments the table vibrates random-

ly, hence the white noise, Z(tc), is specified as an addi-
tional input. It has been shown in Section 2.3 that the
discrete observations of the table displacement Yt's can be
modeled using Eq. ( 9), and the results of constrained ARMA
modeling were given in Section 2.4.

During the course of firing experiments, the average
firing frequency of the M-139 machine gun, defined as the

inverse of the average time intervals between two successive

fires can be estimated. Figure 7 shows a plot of relative

displacement of the receiver and the cradle of the M-139

gun used to estimate the average firing period, i.e. ' 4

5 "
(2 + Tg) inches 2 3 secs - .p7gy €O
(10-1) fires 6.5 inches ? fire

.

similar calculations (using computer) were carried out using
data from 10 additional experiments to obtain firing periods
of .0797, .0809, .0797, .0782, .0792, .0809, .0801, .0794 and ;?
.0783 second. From these estimated firing periods, the
average firing frequency is 12,58 Hz. For the table mount-
ings associated with the experiments in which the M-139 ma- o

chiné gun failed, the constrained ARMA modeling technique
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yielded an estimated table's natural frequency of 12.6 Hz

as shown in Table 1. Noting this, one can conclude that
during the firing experiments, the M-139 machine gun failed
because its firing frequency and the table's natural fre-
quency were of the same order of magnitude. It should also
be noted that the table used in the firing experiments which
the M-139 machine gun did not fail had different mountings
(i.e., different spring constants). The estimated natural
frequencies of the table were different from the firing fre-
quency of 12.58 Hz; e.g., 12.0 and 25.7 Hz as shown in

Table 1.

5. CONCLUSION

l. It is shown that a constrained ARMA (2,1) model can
be used to fit the experimental responsesof a second-order
system due to a train of impulses assuming the noise is also
an output of the system.

2. The constrained ARMA(2,1) model is superior to the
signal plus white noise model because of (i) less parameters,
(ii) less computer time and (iii) less residuals.

3. The constrained ARMA(2,1) model can be physically
interpreted in terms of damping factor, ¢, and natural fre-
quency,w_ i hence it can be used in designing the machine gun

mounting system.
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APPENDIX
Suppose that €¢ and G(tA—tk) are from the same system;
b T - € is a uniform sampling of e(tc) governed by a sto-

chastic differential equation

a? d
e(t )+2zw_ =——
dtc C n dtc

e(tc)+wn2 el(t,) = Z(t)) A.l

where Z(tc) is the white noise process with properties
E(e(t))) = 0, E(Z(t )2 (t +1)) = 0226(1). The discrete pro-

cess €, 1is represented by [1,2,4],

t

Be = $y8p.g * #5855 * 8, 02, ,

where ¢1,¢2 and 91

Also G(tA-tk) defined by Eq. (3) can be written as

—a(tA-tk)
G(th-t,) = e sin(b(tA-tkDU(tA-tk)/b A.3
Suppose that (t-Z)A-tk 3> 0, then U(tA-tk) = 1, and

using ¢; = 76™™ cos bA, ¢p = ay e e Eq. A.3,

it can be shown by algebra that

G(ta-t,) - ¢ G(ETTh-tk) - ¢, G(t-2a-t,) = 0 A.4

")

are as defined by Egs. (10), (11) and (12).
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Since G(tA-tk) = 0 for tA—tk<0, it follows that

e, ] |
G(tA-tk)-¢16(t-1A-tk)-¢2G(t—iA-tk) = 0 when »
tA-tk < 0 or (t—2)A-tk 2 0. Hence Eq. (8) can be closely

approximated by Eq. (9); i.e.,

Yp = 0 ¥pq * 0¥ 5, + a-0,a .
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ABSTRACT

Force data recorded during an experiment of firing
the M-139 machine gun are analyzed using stochastic diff-
erential equation models. These models represent overall
M-139 systems, which are composed of three systems: a
supporting table, a recoil system and a bolt assembly.

The analysis is made to decompose these force models to

obtain the parameters of the subsystems.
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1. Introduction

In a previous paper [4], the table displacement data
resulting from the experiments of firing the M-139 machine
gun has been analyzed using a constrained ARMA(2,1) model.
The model was fitted under the assumptions that the sig-
nals are a train of impulse responses and the noise is due
to random shocks. The constrained ARMA(2,1) model fits the
table displacement data well, as the residuals variances
are less than 0.4% of the variances of the data. The
damping ratio and natural frequency of the table were es-
timated from which it was shown that the M-139 machine gun
jammed when its firing frequency coincided with the table's
natural frequency.

Physically a firing experiment contains not only the
table but also the M-139 machine gun; yet, the analysis of
the table displacement data did not reveal the gun dynamics.
By examining a sketch of the firing experiment shown in
Fig. 1, it can be seen that the table displacement data
was recorded afar from the gun. Consequently, one expects
little or no effect of the gun dynamics on the table dis-
placements. During these firing experiments, the reaction
forces at the mounting of the gun to the table were also
recorded. For an experiment of firing ten sucessive rounds
of the M-139 machine gun, the recorded forces, taken at the
four corners of the rectangular-shape gun‘'s base, are shown

in Figs. (2A-2D). Since these forces were recorded much
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closer to the gun than the table displacements, it is

expected that these forces data contain the gun's dynamics.
The objective of this paper is to fit the force gdata
into linear stochastic differential eguation models. The
orders of these models are expected to be higher than two,
as the force data contain the gun‘s as well as the table's
dynamics. Since the differential equation fitted to the
force. data describes a coupled system, a method of de-
composition is developed in order to interpret the model

in the form of the firing experiments' subsystems.
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2, Modeling Technique
The digitized force data was fitted to obtain a

stochastic differential equation model which is formulated
by letting tc denote a continuous time, and Z(tc) denote
the white noise process with properties E(Z(tc)) = 0 and
E(Z(tc)Z(tc+s)) = czzs(s), where § (s) is the Dirac delta
function. The continuous autoregressive moving average

process of orders n and m (AM(n,m)), denotes by X(tc), can

be defined in terms of symbolic derivatives as

a’™xX( ) n an Tt
n +.L Gn-i n-1 K(tc)
dtc i=1 dtC
m aJ
= b. — 2 (t
Bl I* jiy b 5 ()
C

where the coefficients ui's and bﬁ's are real.

Let My i=1l, 2,...,n be the characteristic roots; i.e,, u

are solutions of the agquation

U - -SRI +al'..l +uo = 0

(1)

'
. S
1

(2)

The required conditions for process (1) to be stationary are

m<n and the real parts of all ui's be negative [3].

The autocovariance function of X(tc) is

Y(8) = BX{t )X (t +s)) =53, ¢y expln;[s])

(3)




where

w2 2 2 n
ey = op NupNGupflaug | of - uwdien
k=1, k#j
= 2 m
N(uj) w I+ bluj + bz“j # eve * bm“j (a)

When process (1) is samnled at a uniform discrete time inter-
val, say A seconds, the resultant discrete process, Xt' can
be represented by a uniformly sampled autoregressive moving

average model (USAM) of the form (2,3,4]

n n-1
X v= B 0.X, omElT= T aa ye
t j=1 1 t-1 t j=1 J =3 (5)
where a, is a discrete white noise process with variance oaz,

and ¢i's and ej's which are functionally related to ui‘s and
bj's defined by [2,3]

n n n .

M (1-e'i%) = 1 (1 -8 =1- 18

i=] i=1 i=1 (6)
and if v,'s are the n-1 invertible roots (Ivj|<1) of the

polynomial

- -
e =35y = (1-A, B) (1-A, B
37 ) kel,kpy K *

n
P(B) = I 1

j=1

)
(7)
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then
n-1 n-1 .
N (1-v,B) = 1 - r 0,87
j=l jﬂl j (3)

The parameters of the continuous process (1) can be
estimated from a set of uniformly sampled data using max-
imum likelihood estimators or approximated by least squares
estimators [2]. Therefore, for a given set of uniformly

sampled data, the sum of squares of a 's in model (5) is ex-

t
pressed in terms of continuous parameters. Using this

procedure, the sum of squares of at‘s can be minimized to

obtain the direct estimates of the continuous parameters.
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Table 1.

Estimated Continuous Parameters

Force Model
Parameters| After Firing |During Firing
%o 1.48 x 108 3.84 x 1013
G 3.00 x 10° 1.57 x 10tt
a3 3.71 » 109 7.42 x 10°
a3 1.42 x 10° 2.56 x 107
: 5
Ny o 2.52 » 10
h )
ag e 7.3 x 1LGF
b, 3.09 x 1077 | 4.30 x 1073 i
f
b 5.39 x 107> | 9.38 x 1¢”° q
d |
bs .22 x'10°% | 1.13'x 1077 1
|
= ¥ |
by - 8.01 x 10712 |
g
bs . 2.43 & 1075 |
I
ey 13
E
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(A) AUTOCORPELATIONS OF at's IN FIG. 3C

(B) AUTOCORRELATIONS OF at's IN FIG 3F
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3. Modeling of Force Data

There are four sets of measured forces in a firing ex-
periment. 1In order to reduce these force data, it is noted
from Fig. 1 that the effective force is horizontal, hence
the four forces are averaged to obtain a total force series

as shown in Fig. 2E. By examining this figure, one can see

that the force data should be fitted in two separate aspects;
that is, (i) force after the firing period and (ii) force
during the firing period.

The force data were modeled using the method summarized
in Sec. 2. The adequate model for the force after firing
are found to be AM(4,3) and for the force during firing are
AM(6,5). The continuous and discrete parameters of the two
models are tabulated in Table 1. The force after firing is
shown in Fig. 3A and the fitted model and at's are shown in
Figs. 3B and 3C. Note that the USAM(4,3) models fits the
data well, as the sum of squares of at's is only 1.7% of the
sum of squares of the force data after firing. The adequacy
of the fitted USAM(4,3) model can be established from the
estimated autocorrelations of the residuals. Figure 4A shows
that the estimated autocorrelation values at various lags are
below the 20 limits (indicated by dotted lines). Therefore,
the assumption that the at's are uncorrelated is not violated.

Figs. 3D-3F show the force during firing, the fitted
USAM (6,5) model, and the at's. The adequacy of the fitted

USAM (6,5) model is apparent from the estimated autocorrelations
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of at's shown in Fig. 4B. The sum of squares of at‘s being
approximately 4.2% of the sum of squares of the data.

It should be noted that although the models fitted to
the force data are continuous, their values can be estimated

at discrete time instants only. For this reason, the models

shown in Figs. 4b and 4e are referred to, respectively, as

USAM (4,3) and UsaM(6,5).
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4. Decomposition of the Fitted AM Models
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In order to associate the fitted AM(4,3) and AM(6,5)

models with the firing experiment, they are decomposed into
subsystems. Before the decomposition technique is introduced,
it should be pointed out that when the gun is operating, the

bolt assembly moves relative to the gqun. The gun ceases to

cperate when the bolt assembly and the gun are locked to-

gether, The fitted models reveal this phenamenon,
model fitted to the force after firing is of lower
than the model of the force during firing.
4.1 Decomposition of the Force Model After Firing
(a) Theoretic Deterministic Model
When the M-139 machine gun ceases to operate,
assembly and the rest of the gun can be considered
mass. The experiment then can be modeled as a two
of-freedom system as shown in Fig. 5. Here M, . C1

represent the mass, damping coefficient and spring

as the

order

the bolt
as one

degree-
and kl
constant

for the table, and Mz, C2' and kz represent the recoil sys-

tem. When this system is excited by forces Fl and Pz' the

system dynamic, designated by X; and X, can be written in

terms of the Laplace transform variable as
2
[uls +(c1+c2)s+kl+k2] -(Czs+k2) xl(s)

-(Czs+k2) M 52+C s+k

2 2 2 xz(s)

Fl(s)

Fz(s)
(9)

e e g
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For convenience let
2

o et LA R i Tl (10)

Tio = Cys + ky (11)

Tzz = Mzs + Czs + k2 12)
then

X, (s) TP (8] + T, F.(8) 3 .4

1l 22°1 127 2
i % N
xz(s) leFl(s) + T11F2(8) (13)

The measured force as a function of time t is

Ble) =€y o8 PRE) = X (R3] o kiR dt) - X B3] o,
F The Laplace transform of X (t) is
| therefore
2
E 1%y " Tag t AW

=Ty [Ty, =Ty F(8) + (Tj; - T, IF,(s)) (16) &

In time domain, Eg. (16) is of the form
(D4 + a3D3 + a202 + a,D + ao) Xt) =
{ kyk,F, (t) +D(k C, +C Kk, ) F, (t)+D% [ (C1Ca#M kI F, () =k M F (¢)] |

3
+D7Ic, (erz(t)-MzFl(t)I} / MM, (17)
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where
a, = k. k., /MM, = Zm 2
0 152" M 1 92 (18)
= < 2 2
ay = KyCo/MMy+k Ci /MMy = 20,0,0, 42850, %0, (19)
a, = kl/nl+k2/n2+k2/n1+c1c2/M1M2 = 4c1w1c2m2 (20)
2 2
tw, T, (1+M2/M1)

;1, Wy and cz, w, are, respectively, the damping ratio and
natural frequencies of the table and recoil system.
(b) Comparison Between the theoretic deterministic
Model and the fitted aM(4,3) model.
The AM(4,3) model fitted to the force after firing is

(D4 + u3D3 + a D2 + o

2 1D + ao) X(t)

2 3
= (1 + b1D + sz + b3D ) Z(t) (22)

Note that the right hand side of Eq. (22) cannot be interp-
reted in terms of the parameters in the right hand side of
Eq. (17) due to the unknown nature of Fl(t) and Fz(t).
However, the left hand side of Eq. (17) and Eg. (22) are
the same; therefore, Eqs. (18-21) also define Qgr Qyr Gy and
oy of Eq. (22) in terms of the M-139 firing experiment sub-
system parameters.

Since the exact solutions for M,, C;, k,, My, C,, and
kz using Eqs. (18-21) are not possible, an approximation

method is developed. It can be seen from Eqs. (18-21) that
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if Ml and MZ are measured, then the values of Cl' ml, CZ and
w, are identifiable. Since Ml and M2 are not known, the
ratio MZ/MI is neglected using a priori knowledge that the
mass of the gun is much smaller than the effective mass of

the table. Equations (20) and (21) can now be written,

ot w22

= 4z 1

a, 19152495 (23)

az = 20,0y + 2Z,u0, 124)

Now let's consider the autoregressive roots Mye Hor Mg and

My such that

(D"Ul) (D-uz) (D-U3) (D-U4) e (D4+‘Y3DB+32D2+01D+Q0) (25)

It follows from Eq. (25) that

b L L

ay = -(u1u2u3 oHgli, MpHgHy + A2u3u4)

(26)
Gy = Palig T Halle ® Baly P lala T UsHy .+ Bally

ag = -(ul t Uy +ug ¢ u4)
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Table 2.

Estimates of Subsystems Parameters
from Force Models.

Supporting : h
Poroe Table Recoil Bolt
Model Cl wl. 52 Wy c3 wgy
(Hz) (Hz) (Hz)
After
Firing .13 ] 26.4 .69 ]11.7 —-——— ——
During
Firing .004| 25.9 .031 13.1 .79 | 73.8
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Comparing Eqs. (18, 19, 23 and 24) with Zgs. (26), it can

be seen that

i+

- & 172

2 1/2
(,”-1) / (27)

e +
Magely = =i, = By
Therefore, the approximate values of the damping ratios and
natural frequencies of the table and the recoil system can

be found from the autoregressive roots of the fitted mode),

These values are given in Table 2.
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4.2 Decomposition of Force Model During Firing.

The force during firing is visualized to be from a three-
degree of freedom spring, mass, and damper system as shown in
Fig. 6. Here kl' Cl and Ml represent the table, kz, C2 and
M2 represent the recoil system and k3, C3 and M3 represent

the bolt assembly. Using a similar approach to estimate the

model it can be shown that the model of the force during fir-

ing is of order six. Knowing that the mass of the bolt assemb-

ly is much smaller than the mass of the gqun, the approximate
damping ratios and natural frequencies of the table, recoil
system and bolt assembly can be obtained from the autoregress-
ive roots. The values of these parameters are also given
in Table 2.

1t should be pointed out that in a previous paper a set
of table displacement data from the same firing experiment
has been analyzed. The estimates of the table's damping ra-
tio and natural frequency were .176 and 25.7 Hz [4]. It can
be seen fram Table 2 that the estimates of the table's nat-
ural freguency, using models from force signals after and
during firing are, 26.4 and 25.9 Hz, respectively. Although
the force models are decomposed using an approximation method,
the estimates of the table's natural frequency are well in
agreement with the previous estimate of 25.7 Hz. Decomposi-
tions of force models after and during firing also yield

estimates of the table's damping ratio. The values of these

s
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estimates, shown in Table 2, are .13 and .004 as compared

with the previous estimate of .176.

5. Conclusions
(1) The force data were fitted in two parts: during and 13
after the firing period. The adequate model for the

force during firing is a continuous autoregressive

b Mt O

moving average model of orders 6 & 5 [AM(6,5)], with

e S w:i

the sum of squares of residuals approximately 4.2%

of the total sum of squares. The model fitted to the

force after firing is AM(4,3) with the residuals sum
of squares estimated to be 1.7% of the total sum of
squares.

(ii) The M-139 experiments are visualized to be composed
of three subsystems. They are a table, a recoil
system and a bolt assembly. Assuning that the table‘s
mass is much larger than the gun's mass, and that the
gun's mass is much larger than the mass of the bolt

assembly, an analysis is made to decompose the force

data models. As a result of this decomposition, the
damping ratios and natural frequencies of the three
subsystems were obtained.

(iii) The estimate of the table's natural frequency is %:
25.9 Hz when the model for the force during the i
firing period was used and 26.4 Hz when the model
for the force after the firing period was used.

These values are in agreement with the estimate of
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the table's natural frequency of 25.7 Hz using the

model fitted to the table displacement data published

earlier. Using the model for the force data during

and after firing, the table's damping ratio is esti-

mated as .004 and .13, respectively. The table's

damping ratio obtained from the table displacement

ki model was .176.
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